Parsing Clothing in Fashion Photographs

Kota Yamaguchi M. Hadi Kiapour Luis E. Ortiz Tamara L. Berg
Stony Brook University
Stony Brook, NY 11794, USA
{kyamagu, mkiapour, leortiz, tlberg}@cs.stonybrook.edu

Abstract

In this paper we demonstrate an effective method for parsing clothing in fashion photographs, an extremely challenging problem due to the large number of possible garment items, variations in configuration, garment appearance, layering, and occlusion. In addition, we provide a large novel dataset and tools for labeling garment items, to enable future research on clothing estimation. Finally, we present intriguing initial results on using clothing estimates to improve pose identification, and demonstrate a prototype application for pose-independent visual garment retrieval.

1. Introduction

Consider the upper east sider in her tea-dress and pearls, the banker in his tailored suit and wingtips, or the hipster in his flannel shirt, tight jeans, and black framed glasses. Our choice of clothing is tightly coupled with our socio-identity, indicating clues about our wealth, status, fashion sense, or even social tribe.

Vision algorithms to recognize clothing have a wide variety of potential impacts, ranging from better social understanding, to improved person identification [11], surveillance [26], computer graphics [14], or content-based image retrieval [25]. The e-commerce opportunities alone are huge! With hundreds of billions of dollars being spent on clothing purchases every year, an effective application to automatically identify and retrieve garments by visual similarity would have exceptional value (see our prototype garment retrieval results in Fig 1). In addition, there is a strong contextual link between clothing items and body parts – for example, we wear hats on our heads, not on our feet. For visual recognition problems such as person detection or pose identification, knowing what clothing items a person is wearing and localizing those items could lead to improved algorithms for estimating body configuration.

Despite the potential research and commercial gains of clothing estimation, relatively few researchers have explored the clothing recognition problem, mostly focused on examining the problem in limited domains [2], or recognizing only a small number of garment types [4, 13]. Our approach tackles clothing estimation at a much more general scale for real-world pictures. We consider a large number (53) of different garment types (e.g. shoes, socks, belts, rompers, vests, blazers, hats, ...), and explore techniques to accurately parse pictures of people wearing clothing into their constituent garment pieces. We also exploit the relationship between clothing and the underlying body pose in two directions – to estimate clothing given estimates of pose, and to estimate pose given estimates of clothing. We show exciting initial results on our proposed novel clothing parsing problem and also some promising results on how clothing might be used to improve pose identification. Finally, we demonstrate some results on a prototype visual garment retrieval application (Fig 1).

Our main contributions include:

- A novel dataset for studying clothing parsing, consist-
An effective model to recognize and precisely parse pictures of people into their constituent garments.

Initial experiments on how clothing prediction might improve state of the art models for pose estimation.

A prototype visual garment retrieval application that can retrieve matches independent of pose.

Of course, clothing estimation is a very challenging problem. The number of garment types you might observe in a day on the catwalk of a New York city street is enormous. Add variations in pose, garment appearance, layering, and occlusion into the picture, and accurate clothing parsing becomes formidable. Therefore, we consider a somewhat restricted domain, fashion photos from Chic-topia.com. These highly motivated users – fashionistas – upload individual snapshots (often full body) of their outfits to the website and usually provide some information related to the garments, style, or occasion for the outfit. This allows us to consider the clothing labeling problem in two scenarios: 1) a constrained labeling problem where we take the users’ noisy and perhaps incomplete tags as the list of possible garment labels for parsing, and 2) where we consider all garment types in our collection as candidate labels.

1.1. Related Work

Clothing recognition: Though clothing items determine most of the surface appearance of the everyday human, there have been relatively few attempts at computational recognition of clothing. Early clothing parsing attempts focused on identifying layers of upper body clothes in very limited situations [2]. Later work focused on grammatical representations of clothing using artists’ sketches [6]. Freifeld and Black [13] represented clothing as a deformation from an underlying body contour, learned from training examples using principal component analysis to produce eigen-clothing. Most recently attempts have been made to consider clothing items such as t-shirt or jeans as semantic attributes of a person, but only for a limited number of garments [4]. Different from these past approaches, we consider the problem of estimating a complete and precise region based labeling of a person’s outfit, for general images with a large number of potential garment types.

Clothing items have also been used as implicit cues of identity in surveillance scenarios [26], to find people in an image collection of an event [11, 22, 25], to estimate occupation [23], or for robot manipulation [16]. Our proposed approach could be useful in all of these scenarios.

Pose Estimation: Pose estimation is a popular and well studied enterprise. Some previous approaches have considered pose estimation as a labeling problem, assigning most likely body parts to superpixels [18], or triangulated regions [20]. Current approaches often model the body as a collection of small parts and model relationships among them, using conditional random fields [19, 9, 15, 10], or discriminative models [8]. Recent work has extended patches to more general poselet representations [5, 3], or incorporated mixtures of parts [27] to obtain state of the art results. Our pose estimation subgoal builds on this last method [27], extending the approach to incorporate clothing estimations in models for pose identification.

Image Parsing: Image parsing has been studied as a step toward general image understanding [21, 12, 24]. We consider a similar problem (parsing) and take a related approach (CRF based labeling), but focus on estimating labelings for a particularly interesting type of object – people – and build models to estimate an intricate parse of a per-
Figure 3: Example Chictopia post, including a few photos and associated meta-data about garment items and styling. If desired, we can make use of clothing tags (underlined) as potential clothing labels.

son’s outfit into constituent garments. We also incorporate discriminatively trained models into the parsing process.

1.2. Overview of the Approach

We consider two related problems: 1) Predicting a clothing parse given estimates for pose, and 2) Predicting pose given estimates for clothing. Clothing parsing is formulated as a labeling problem, where images are segmented into superpixels and then clothing labels for every segment are predicted in a CRF model. Unary potentials account for clothing appearance and clothing item location with respect to body parts. Pairwise potentials incorporate label smoothing, and clothing item co-occurrence. Pose estimation is formulated as an extension to state of the art work on flexible part models [27], to incorporate estimates of clothing as an additional feature.

The remainder of the paper discusses our novel data set and labeling tools (Sec 2), our approaches to clothing parsing and pose estimation (Sec 3), results plus a peak at our prototype application for visual garment retrieval (Sec 4), and conclusions and future work (Sec 5).

2. Fashionista Dataset & Labeling Tools

We introduce a novel dataset, useful for training and testing clothing estimation techniques. This dataset consists of 158,235 photographs collected from Chictopia.com, a social networking website for fashion bloggers. On this website, fashionistas upload “outfit of the day” type pictures, designed to draw attention to their fashion choices or as a form of social interaction with peers. Because these are people who particularly care about their clothes they tend to display a wide range of styles, accessories, and garments. However, pictures are also often depicted in relatively simple poses (mostly standing), against relatively clean backgrounds, and without many other people in the picture. This makes for an ideal scenario for studying clothing!

In addition, users also provide additional outfit information in the form of tags, comments, and links, etc (e.g. Fig 3). We make use of the tag portion of this meta-data to extract useful information about what clothing items might be present in each photo (but can also ignore this information if we want to study clothing parsing with no prior knowledge of items). Sometimes the tags are noisy or incomplete, but often they cover the items in an outfit well.

As a training and evaluation set, we select 685 photos with good visibility of the full body and covering a variety of clothing items. For this carefully selected subset, we design and make use of 2 Amazon Mechanical Turk jobs to gather annotations. The first Turk job gathers ground truth pose annotations for the usual 14 body parts [27]. The second Turk job gathers ground truth clothing labels on superpixel regions. All annotations are verified and corrected if necessary to obtain high quality annotations.

In this ground truth data set, we observe 53 different clothing items, of which 43 items have at least 50 image regions. Adding additional labels for hair, skin, and null (background), gives a total of 56 different possible clothing labels – a much larger number than considered in any previous approach [4, 2, 6, 26, 11, 22, 25]. On average, photos include 291.5 regions and 8.1 different clothing labels. Many common garment items have a large number of occurrences in the data set (number of regions with each label denoted in parenthesis), including dress (6565), bag (4431), blouse (2946), jacket (2472), cardigan (1866), t-shirt (1395), boots (1348), jeans (1136), sweater (1027), etc. However, even items probably unheard of by the fashion non-initiate, also have many occurrences – leggings (545), vest (955), cape (137), jumper (758), wedges (518), and romper (164), for example.

3. Clothing parsing

In this section, we describe our general technical approach to clothing parsing, including formal definitions of the problem and our proposed model.

3.1. Problem formulation

We formulate the clothing parsing problem as a labeling of image regions. Let I denote an image showing a person. The goal is to assign a label of a clothing or null (background) item to each pixel, analogous to the general image parsing problem. However, in this paper we simplify the clothing parsing problem by assuming that uniform appearance regions belong to the same item, as reported in [11], and reduce the problem to the prediction of a labeling over a set of superpixels. We denote the set of clothing labels by \(L \equiv \{l_i\} \), where \(i \in U \) denotes a region index within a set of superpixels \(U \) in \(I \), and \(l_i \) denotes a clothing label for region indexed by \(i \) (e.g., \(l_i = \text{t-shirt or pants} \)). Also let \(s_i \) denote the set of pixels in the \(i \)-th region.

In this paper, we take a probabilistic approach to the clothing parsing problem. Within our framework, we reduce the general problem to one of maximum a posteriori
(MAP) assignments; we would like to assign clothing labels based on the most likely joint clothing label assignments under a probability distribution \(P(L | I) \) given by the model. However, it is extremely difficult to directly define such a distribution due to the varied visual appearance of clothing items. Therefore, we introduce another variable, human pose configuration, and consider the distribution in terms of interactions between clothing items, human pose, and image appearance. We denote a human pose configuration by \(X = \{ x_p \} \), which is a set of image coordinates \(x_p \) for body joints \(p \), e.g., head or right elbow.

Ideally, one would then like to find the joint MAP assignment over both clothing and pose labels with respect to the joint probability distribution \(P(X, L | I) \) simultaneously. However, such MAP assignment problems are often computationally intractable because of the large search space and the complex structure of the probabilistic model. Instead, we split the problem into parts, solving the MAP assignment of \(P(L | X, I) \) and \(P(X | I) \) separately.

Our clothing parsing pipeline proceeds as follows:
1. Obtain superpixels \(\{ s_i \} \) from an image \(I \)
2. Estimate pose configuration \(X \) using \(P(X | I) \)
3. Predict clothes \(L \) using \(P(L | X, I) \)
4. Optionally, re-estimate pose configuration \(X \) using model \(P(X | L, I) \)

Figure 2 shows an example of this pipeline. We now briefly describe each step and formally define our probabilistic model.

3.2. Superpixels

We use a recent image segmentation algorithm [11] to obtain superpixels. The algorithm provides a hierarchical segmentation, but we set the threshold value to 0.05 to obtain a single over-segmentation for each image. This process typically yields between a few hundred to a thousand regions per image, depending on the complexity of the person and background appearance (Fig 2(a) shows an example).

3.3. Pose estimation

We begin our pipeline by estimating pose \(\hat{X} \) using \(P(X | I) \):

\[
\hat{X} \in \arg \max_X P(X | I) .
\]

For our initial pose estimate, we make use of the current best implementation available to the computer vision community [27]. In addition to the above terms, this model includes an additional hidden variable representing a type label for pose mixture components, \(T = \{ t_p \} \) for each body joint \(p \), containing information about the types of arrangements possible for a joint. Therefore, the estimation problem is written as \((\hat{X}, T) \in \arg \max_{X,T} P(X, T | I) \). The scoring function used to evaluate pose [27] is:

\[
\ln P(X, T | I) \equiv \sum_p w_p(t_p)^T \phi(x_p | I) + \\
\sum_{p,q} w_{p,q}(t_p, t_q)^T \psi(x_p - x_q) - \ln Z,
\]

where, \(w \) are the model parameters, \(\phi \) and \(\psi \) are feature functions, and \(Z \) is a partition function.

3.4. Clothing labeling

Once we obtain the initial pose estimate \(\hat{X} \), we proceed to estimating the clothing labeling:

\[
\hat{L} \in \arg \max_L P(L | \hat{X}, I) .
\]

We model the probability distribution \(P(L | X, I) \) with a second order conditional random field (CRF):

\[
\ln P(L | X, I) \equiv \sum_{i \in U} \Phi(l_i | X, I) + \sum_{(i,j) \in V} \lambda_1 \Psi_1(l_i, l_j) + \sum_{(i,j) \in V} \lambda_2 \Psi_2(l_i, l_j | X, I) - \ln Z,
\]

where \(V \) is a set of neighboring pairs of image regions, \(\lambda_1 \) and \(\lambda_2 \) are model parameters, and \(Z \) is a partition function.

We model the unary potential function \(\Phi \) using the probability of a label assignment, given the feature representation of the image region \(s_i \):

\[
\Phi(l_i | X, I) \equiv \ln P(l_i | \phi(s_i, X)).
\]

In this paper, we define the feature vector \(\phi \) as the concatenation of (1) normalized histograms of RGB color, and (2) normalized histogram of CIE L*a*b* color, (3) histogram of Gabor filter responses, (4) normalized 2D coordinates within the image frame, and (5) normalized 2D coordinates with respect to each body joint location \(x_p \). In our experiments, we use 10 bins for each feature type. Using a 14-joint pose estimator, this results in a 360 dimensional sparse representation for each image region. For the specific marginal probability model \(P(l_i | \phi(s, X)) \), we experimentally evaluated a few distributions and found that logistic regression works well for our setting.

The binary potential function \(\Psi_1 \) is a log empirical distribution over pairs of clothing region labels in a single image:

\[
\Psi_1(l_i, l_j) \equiv \ln \tilde{P}(l_i, l_j).
\]

This term serves as a prior distribution over the pairwise co-occurrence of clothing labels (e.g. shirts are near blazers, but not shoes) in neighboring regions within an image. We compute the function by normalizing average frequency of neighboring label pairs in training samples.

The last binary potential in (4) estimates the probability of neighboring pairs having the same label (i.e. label smoothing), given their features, \(\psi \):

\[
\Psi_2(l_i, l_j | X, I) \equiv \ln P(l_i = l_j | \psi(s_i, s_j, X)).
\]
In this paper, we define the feature transformation to be
\[\psi(s_i, s_j) \equiv [\phi(s_i) + \phi(s_j)]/2, |\phi(s_i) - \phi(s_j)| \]
As with the unary potential, we use logistic regression for this probability distribution.

Because of the loopy structure of our graphical model, it is computationally intractable to solve (3) exactly. Therefore, we use belief propagation to obtain an approximate MAP assignment, using the libDAI [17] implementation.

In practice, regions outside of the bounding box around pose estimation are always background. Therefore, in our experiment, we fix these outside regions to null and run inference only within the foreground regions.

3.5. Pose re-estimation

The original pose estimations may be inaccurate. We believe that these estimates may be improved by considering clothing predictions during pose identification (because clothes and pose are tightly coupled). Given the predicted clothing labels \(\hat{L} \), we try to improve our prior MAP pose assignment \(\hat{X} \) by computing the posterior MAP conditioned on \(L \) in (1):
\[
\hat{X} \in \arg \max_X P(X|\hat{L}, I).
\]
To incorporate clothing item predictions in the pose estimation process we modify (1). To do this, we update the appearance feature \(\phi(x_p|I) \) in (1) to \(\phi(x_p|L, I) \), where our new appearance feature includes HoG as well as normalized histograms of clothing labels computed at the location \(x_p \).

3.6. Training

Training of our clothing parser includes parameter learning of the pose estimator \(P(X|I) \) and \(P(X|L, I) \), learning of potential functions in \(P(L|X, I) \), and learning of CRF parameters in (4).

Pose estimator: The training procedure of [27] uses separate negative examples, sampled from scene images to use the pose estimator as a detector. Since our problem assumes a person is shown, we do not use a scene based negative set, but rather mine hard negative examples using false detections in our images. We treat a detection as negative if less than 30% of the body parts overlap with their true locations with ratio more than 60%.

Potential functions: We learn the probability distributions \(P(l_i|\phi) \) and \(P(l_i = l_j|\psi) \) in (5) and (7) using logistic regression with L2 regularization (liblinear implementation [7]). For each possible clothing item, e.g. shirt or boots we learn the distribution its regional features, \(P(l_i|\phi) \). We learn this model using a one-versus-all approach for each item. This usually introduces an imbalance in the number of positive vs negative examples, so the cost parameter is weighted by the ratio of positive to negative samples.

CRF parameters: Our model (4) has two parameters \(\lambda_1 \) and \(\lambda_2 \). We find the best parameters by maximizing cross validation accuracy over pixels in our training data using line search and a variant of the simplex method (fminsearch in Matlab). In our experiment, typically both \(\lambda_1 \) and \(\lambda_2 \) preferred small values (e.g., 0.01-0.1).

4. Experimental Results

We evaluate the performance of our approach using 685 annotated samples from the Fashionista Dataset (described in Sec 2). All measurements use 10-fold cross validation (9 folds used for training, and the remaining for testing). Since the pose estimator contains some random components, we repeat this cross validation protocol 10 times.

In the remainder of this section we discuss quantitative (Sec 4.1) and qualitative (Sec 4.2) evaluations of our proposed clothing parsing model, demonstrate intriguing initial results on incorporating clothing estimates to improve pose identification (Sec 4.3), and finally show a prototype garment retrieval application (Sec 4.4).

<table>
<thead>
<tr>
<th>Method</th>
<th>Pixel acc</th>
<th>mAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-a with truth</td>
<td>89.0 ± 0.8</td>
<td>63.4 ± 1.5</td>
</tr>
<tr>
<td>Full-a without pose</td>
<td>86.0 ± 1.0</td>
<td>58.8 ± 2.1</td>
</tr>
<tr>
<td>Full-m with truth</td>
<td>88.3 ± 0.8</td>
<td>69.6 ± 1.7</td>
</tr>
<tr>
<td>Full-m without pose</td>
<td>84.7 ± 1.0</td>
<td>64.6 ± 1.6</td>
</tr>
<tr>
<td>Unary</td>
<td>88.2 ± 0.8</td>
<td>69.8 ± 1.8</td>
</tr>
<tr>
<td>Baseline</td>
<td>77.6 ± 0.6</td>
<td>12.8 ± 0.1</td>
</tr>
</tbody>
</table>

Table 1: Clothing Parsing performance. Results are shown for our model optimized for accuracy (top), our full model optimized for mAGR (2nd), our model using unary term only (3rd), and a baseline labeling (bottom).

<table>
<thead>
<tr>
<th>Garment</th>
<th>Full-m with truth</th>
<th>Full-m without pose</th>
</tr>
</thead>
<tbody>
<tr>
<td>background</td>
<td>95.3 ± 0.4</td>
<td>95.6 ± 0.4</td>
</tr>
<tr>
<td>skin</td>
<td>74.6 ± 2.7</td>
<td>76.3 ± 2.9</td>
</tr>
<tr>
<td>hair</td>
<td>76.5 ± 4.0</td>
<td>76.7 ± 3.9</td>
</tr>
<tr>
<td>dress</td>
<td>65.8 ± 7.7</td>
<td>67.2 ± 9.4</td>
</tr>
<tr>
<td>bag</td>
<td>44.9 ± 8.0</td>
<td>47.6 ± 8.3</td>
</tr>
<tr>
<td>blouse</td>
<td>63.6 ± 9.5</td>
<td>66.2 ± 9.1</td>
</tr>
<tr>
<td>shoes</td>
<td>82.6 ± 7.2</td>
<td>85.0 ± 8.8</td>
</tr>
<tr>
<td>top</td>
<td>62.0 ± 14.7</td>
<td>64.6 ± 13.1</td>
</tr>
<tr>
<td>skirt</td>
<td>59.4 ± 10.4</td>
<td>60.6 ± 13.2</td>
</tr>
<tr>
<td>jacket</td>
<td>51.8 ± 15.2</td>
<td>53.3 ± 13.5</td>
</tr>
<tr>
<td>coat</td>
<td>30.8 ± 10.4</td>
<td>31.1 ± 5.1</td>
</tr>
<tr>
<td>shirt</td>
<td>60.3 ± 18.7</td>
<td>60.3 ± 17.3</td>
</tr>
<tr>
<td>cardigan</td>
<td>39.4 ± 9.5</td>
<td>39.0 ± 12.8</td>
</tr>
<tr>
<td>blazer</td>
<td>51.8 ± 11.2</td>
<td>51.7 ± 10.8</td>
</tr>
<tr>
<td>t-shirt</td>
<td>63.7 ± 14.0</td>
<td>64.1 ± 12.0</td>
</tr>
<tr>
<td>socks</td>
<td>67.4 ± 16.1</td>
<td>67.8 ± 19.0</td>
</tr>
<tr>
<td>necklace</td>
<td>51.3 ± 22.5</td>
<td>46.5 ± 20.1</td>
</tr>
<tr>
<td>bracelet</td>
<td>49.5 ± 19.8</td>
<td>56.1 ± 17.6</td>
</tr>
</tbody>
</table>

Table 2: Recall for selected garments
4.1. Clothing Parsing Accuracy

We measure performance of clothing labeling in two ways, using average pixel accuracy, and using mean Average Garment Recall (mAGR). mAGR is measured by computing the average labeling performance (recall) of the garment items present in an image, and then the mean is computed across all images. Table 1 shows a comparison for 8 versions of our approach. Full-a and Full-m are our models with CRF parameters learned to optimize pixel accuracy and mAGR respectively (note that the choice of which measure to optimize for is application dependent). The most frequent label present in our images is background. Naively predicting all regions to be background results in a reasonably good 77% accuracy. Therefore, we use this as our baseline method for comparison. Our model (Full-a) achieves a much improved 89% pixel accuracy, close to the result we would obtain if we were to use ground truth estimates of pose (89.3%). If no pose information is used, clothing parsing performance drops significantly (86%). For mAGR, the Unary model achieves slightly better performance (69.8%) over the full model because smoothing in the full model tends to suppress infrequent (small) labels.

Finally, we also report results on the general clothing parsing problem (with no prior knowledge about items from meta-data). As seen in Fig 4, the full parsing problem with all 53 garment possibilities is quite challenging, but our method still obtains 80.8% pixel accuracy, a cross-validated gain of 3% over the baseline method.

4.2. Qualitative evaluation

We also test our clothing parser on all 158k un-annotated samples in our Fashionista dataset. Since we don’t have ground truth labels for these photos, we just report qualitative observations. From these results, we confirm that our parser predicts good clothing labels on this large and varied dataset. Figure 5 shows some good parsing results, even handling relatively challenging clothing (e.g. small hats, and partially occluded shoes). Generally the parsing problem becomes easier in highly distinguishable appearance situations, such as on clean backgrounds, or displaying distinctive clothing regions. Failure cases (Fig 6) are observed due to ambiguous boundaries between foreground and background, when initial pose estimates are quite incorrect, or in the presence of very coarse patterns. Other challenges include pictures with out of frame body joints, close ups of individual garment items, or no relevant entity at all.

Discussion of Superpixels: Our approach assumes that each superpixel has the same clothing label and encourages over-segmentation to make this assumption nearly true. However, in some cases the superpixel segmentation does not correctly separate regions. This is likely to occur in an image with nearly invisible boundaries, such as a black-haired person wearing a black jacket with black pants. This issue is an age old segmentation problem and very difficult to solve. We could for example, consider pixel-wise labeling rather than superpixel, with the drawback of significant increase in the problem size for inference (but still might not observe significant improvements).

4.3. Pose Re-Estimation Accuracy

Finally, we also report initial experiments on pose re-estimation using clothing predictions. Pose estimation is a well-studied problem with very effective methods [8, 5, 3, 27]. For evaluation we measure performance as the probability of a correct pose (PCP) [27], which computes the percentage of body parts correctly overlapping with the ground truth parts. Table 3 and 4 summarizes performance. Current methods [27] obtain a cross-validated PCP of 86.5% on our data set. Using our estimated clothing labels, we achieve 86.9%. As motivation for future research on clothing estimation, we also observe that given true clothing labels our pose re-estimation system reaches a PCP of 89.5%, demonstrating the potential usefulness of incorporating clothing into pose identification.

4.4. Retrieving Visually Similar Garments

We build a prototype system to retrieve garment items via visual similarity in the Fashionista dataset. For each
parsed garment item, we compute normalized histograms of RGB and L*a*b* color within the predicted labeled region, and measure similarity between items by Euclidean distance. For retrieval, we prepare a query image and obtain a list of images ordered by visual similarity. Figure 1 shows a few of top retrieved results for images displaying *shorts*, *blazer*, and *t-shirt* (query in leftmost col, retrieval results in right 4 cols). These results are fairly representative for the more frequent garment items in our dataset. While we don’t pursue this further here, this fun result demonstrates
the potential for visual garment retrieval applications of the future!

5. Conclusions and Future Work

This paper proposes an effective method to produce an intricate and accurate parse of a person’s outfit. Two scenarios are explored: parsing with meta-data provided garment tags, and parsing with unconstrained label sets. A large novel data set and labeling tools are also introduced. Finally, we demonstrate intriguing initial experiments on using clothing estimates to improve human pose prediction, and a prototype application for visual garment search.

In future work, we would like to consider solutions to some of the observed challenges of clothing parsing, including: considering partial body pose estimates, using multiple segmentations to deal with inaccuracies in a single segmentation, and incorporating higher level potentials for longer range models of garment items.

References

<table>
<thead>
<tr>
<th>Method</th>
<th>torso</th>
<th>ul leg</th>
<th>ur leg</th>
<th>ll leg</th>
<th>lr leg</th>
<th>ul arm</th>
<th>ur arm</th>
<th>ll arm</th>
<th>lr arm</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clothing</td>
<td>100.0±0.2</td>
<td>94.3±2.1</td>
<td>93.8±2.4</td>
<td>90.8±3.0</td>
<td>90.3±3.7</td>
<td>86.6±3.9</td>
<td>83.3±3.4</td>
<td>62.8±6.3</td>
<td>62.2±6.1</td>
<td>99.5±0.7</td>
</tr>
<tr>
<td>With clothing</td>
<td>99.9±0.3</td>
<td>94.3±2.3</td>
<td>95.3±2.1</td>
<td>89.4±3.9</td>
<td>93.3±3.1</td>
<td>84.7±3.8</td>
<td>86.6±3.6</td>
<td>61.8±5.5</td>
<td>64.9±6.6</td>
<td>99.2±1.1</td>
</tr>
<tr>
<td>True clothing</td>
<td>100.0±0.1</td>
<td>94.3±2.9</td>
<td>96.2±3.0</td>
<td>90.7±3.3</td>
<td>94.7±2.7</td>
<td>87.7±3.6</td>
<td>89.9±3.1</td>
<td>70.4±5.0</td>
<td>71.7±5.9</td>
<td>99.5±0.9</td>
</tr>
</tbody>
</table>

Table 4: Limb detection rate