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Abstract

We posit that visually descriptive language offers com-

puter vision researchers both information about the world,

and information about how people describe the world. The

potential benefit from this source is made more significant

due to the enormous amount of language data easily avail-

able today. We present a system to automatically gener-

ate natural language descriptions from images that exploits

both statistics gleaned from parsing large quantities of text

data and recognition algorithms from computer vision. The

system is very effective at producing relevant sentences for

images. It also generates descriptions that are notably more

true to the specific image content than previous work.

1. Introduction
People communicate using language, whether spoken,

written, or typed. A significant amount of this language
describes the world around us, especially the visual world
in an environment or depicted in images or video. Such vi-
sually descriptive language is potentially a rich source of
1) information about the world, especially the visual world,
and 2) training data for how people construct natural lan-
guage to describe imagery. This paper exploits both of these
lines of attack in order to build an effective system for au-
tomatically generating natural language – sentences – from
images.

It is subtle, but several factors distinguish the task of tak-
ing images as input and generating sentences from tasks
in many current computer vision efforts on object and
scene recognition. As examples, when forming descrip-
tive language, people go beyond specifying what objects are
present in an image – this is true even for very low resolu-
tion images [23] and for very brief exposure to images [12].
In both these settings, and in language in general, peo-
ple include specific information describing not only scenes,
but specific objects, their relative locations, and modifiers
adding additional information about objects. Mining the

Figure 1. Our system automatically generates the following de-
scriptive text for this example image: “This picture shows one

person, one grass, one chair, and one potted plant. The person is

near the green grass, and in the chair. The green grass is by the

chair, and near the potted plant.”

absolutely enormous amounts of visually descriptive text
available in special library collections and on the web in
general, make it possible to discover what modifiers people
use to describe objects, and what prepositional phrases are
used to describe relationships between objects. These can
be used to select and train computer vision algorithms to
recognize constructs in images. The output of the computer
vision processing can be “smoothed” using language statis-
tics and then combined with language models in a natural
language generation process.

Natural language generation constitutes one of the fun-
damental research problems in natural language process-
ing (NLP) and is core to a wide range of NLP applica-
tions such as machine translation, summarization, dialogue
systems, and machine-assisted revision. Despite substan-
tial advancement within the last decade, natural language
generation still remains an open research problem. Most
previous work in NLP on automatically generating captions
or descriptions for images is based on retrieval and sum-
marization. For instance, [1] relies on GPS meta data to
access relevant text documents and [14] assume relevant
documents are provided. The process of generation then
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Figure 2. System flow for an example image: 1) object and stuff detectors find candidate objects, 2) each candidate region is processed by
a set of attribute classifiers, 3) each pair of candidate regions is processed by prepositional relationship functions, 4) A CRF is constructed
that incorporates the unary image potentials computed by 1-3, and higher order text based potentials computed from large text corpora, 5)
A labeling of the graph is predicted, 6) Sentences are generated.

becomes one of combining or summarizing relevant docu-
ments, in some cases driven by keywords estimated from
the image content [14]. From the computer vision perspec-
tive these techniques might be analogous to first recognizing
the scene shown in an image, and then retrieving a sentence
based on the scene type. It is very unlikely that a retrieved
sentence would be as descriptive of a particular image as the
generated sentence in Fig. 1.

This paper pushes to make a tight connection between
the particular image content and the sentence generation
process. This is accomplished by detecting objects, mod-
ifiers (adjectives), and spatial relationships (prepositions),
in an image, smoothing these detections with respect to a
statistical prior obtained from descriptive text, and then us-
ing the smoothed results as constraints for sentence gen-
eration. Sentence generation is performed either using a
n-gram language model [3, 22] or a simple template based
approach [27, 4]. Overall, our approach can handle the po-
tentially huge number of scenes that can be constructed by
composing even a relatively small number of instances of
several classes of objects in a variety of spatial relation-
ships. Even for quite small numbers for each factor, the
total number of such layouts is not possible to sample com-
pletely, and any set of images would have some particular
bias. In order to avoid evaluating such a bias, we purpose-
fully avoid whole image features or scene/context recogni-
tion in our evaluation – although noting explicitly that it
would be straightforward to include a scene node and ap-
propriate potential functions in the model presented.

2. Related Work
Early work on connecting words and pictures for the pur-

pose of automatic annotation and auto illustration focused
on associating individual words with image regions [2, 8].

In continuations of that work, and other work on image
parsing and object detection, the spatial relationships be-
tween labeled parts – either detections or regions – of im-
ages was used to improve labeling accuracy, but the spa-
tial relationships themselves were not considered outputs in
their own right [24, 7, 16, 21]. Estimates of spatial relation-
ships between objects form an important part of the output
of the computer vision aspect of our approach and are used
to drive sentence generation.

There is a great deal of ongoing research on estimating
attributes for use in computer vision [18, 9, 19, 15] that
maps well to our process of estimating modifiers for ob-
jects in images. We use low level features based on [9] for
modifier estimation. Our work combines priors for visually
descriptive language with estimates of the modifiers based
on image regions around object detections.

There is some recent work very close in spirit to our own.
Yao et al. [26] look at the problem of generating text with a
comprehensive system built on various hierarchical knowl-
edge ontologies and using a human in the loop for hierar-
chical image parsing (except in specialized circumstances).
In contrast, our work automatically mines knowledge about
textual representation, and parses images fully automati-
cally – without a human operator – and with a much simpler
approach overall. Despite the simplicity of our framework
it is still a step toward more complex description generation
compared to Farhadi et al’s (also fully automatic) method
based on parsing images into a single “triple” describing 1
object, 1 action, and 1 scene [11]. In their work, they use
a single triple estimated for an image to retrieve sentences
from a collection written to describe similar images. In con-
trast our work detects multiple objects, modifiers, and their
spatial relationships, and generates sentences to fit these
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Figure 3. CRF for an example image with 2 object detections and
1 stuff detection. Left shows original CRF with trinary potentials.
Right shows CRF reduced to pairwise potentials by introducing
z variables whos domains are all possible triples of the original
3-clique.

constituent parts, as opposed to retrieving sentences whole.

3. Method Overview
An overview of our system is presented in figure 2. For

an input image: 1) Detectors are used to detect things (e.g.
bird, bus, car, person, etc.) and stuff (e.g. grass, trees, water,
road, etc.). We will refer to these as objects (thing objects)
and stuff, or collectively as objects. 2) each candidate object
(either thing object or stuff) region is processed by a set
of attribute classifiers, 3) each pair of candidate regions is
processed by prepositional relationship functions, 4) A CRF
is constructed that incorporates the unary image potentials
computed by 1-3, with higher order text based potentials
computed from large text corpora, 5) A labeling of the graph
is predicted, and 6) Sentences are generated.

The rest of the paper describes the Conditional Random
Field used to predict a labeling for an input image (Sec. 4),
then the image based potentials (Sec. 5.1), and higher or-
der text based potentials (Sec. 5.2). Sentence generation is
covered in (Sec. 6) and evaluation in (Sec. 7).

4. CRF Labeling
We use a conditional random field (CRF) to predict the

best labeling for an image (e.g. fig 3). Nodes of the CRF
correspond to several kinds of image content: a) Thing ob-
jects or stuff, b) attributes which modify the appearance of
a object, and c) prepositions which refer to spatial relation-
ships between object-object, object-stuff or stuff-stuff pairs.

For a query image, we run a large set of object detec-
tors across the image and collect the set of high scoring de-
tections. We merge detections that are highly overlapping
(greater than 0.3 intersection/union) into groups and create
an object node for each group. In this way we avoid pre-
dicting two different object labels for the same region of
an image which can occur when two different object detec-
tors fire on the same object. We also run our stuff detectors
across the image and create nodes for stuff categories with
high scoring detections. Note that this means that the num-
ber of nodes in a graph constructed for an image depends on

the number of object and stuff detections that fired in that
image (something we have to correct for during parameter
learning). For each object and stuff node we classify the ap-
pearance using a set of trained attribute classifiers and create
a modifier node. Finally, we create a preposition node for
each pair of object and stuff detections. This node predicts
the probability of a set of prepositional relationships based
on the spatial relationship between two object regions.

The domain (of possible labels) for each node is node
dependent. For an object (or stuff) node the domain cor-
responds to the set of object (or stuff) detectors that fired
at that region in the image. For the attribute nodes the do-
main corresponds to a set of appearance attributes that can
modify the visual characteristics of an object (e.g. green or
furry). For the preposition nodes the domain corresponds
to a set of prepositional relations (e.g. on, under, near) that
can occur between two objects.

The energy function for an image labeling (assignment
of each node to one of the values of its domain) is described
by:

E(L; I, T ) =
�

i∈objs

Fi +
2

N − 1

�

ij∈objPairs

Gij (1)

where N is the number of objects and 2/(N-1) normalizes –
for variable number of node graphs – the contribution from
object pair terms so that they contribute equally with the
single object terms to the energy function. Here:

Fi = α0β0ψ(obji; objDet) + α0β1ψ(attri; attrCl) (2)
+α1γ0ψ(attri, obji; textPr) (3)

Gij = α0β2ψ(prepij ; prepFuns) (4)
+α1γ1ψ(obji, prepij , objj ; textPr) (5)

The three unary potential functions are computed from
image based models and refer to: the detector scores for
object(s) proposed by our trained object and stuff detec-
tors (ψ(obji; objDets)), the attribute classification scores
for an object (or stuff) region as predicted by our trained at-
tribute classifiers (ψ(attri; attrCl)), and the prepositional
relationship score computed between pairs of detection re-
gions (ψ(prepij ; prepFuns)). Descriptions of the particu-
lar detectors, classifiers and functions used are provided in
Sec. 5.1.

The pairwise (ψ(modi, obji; textPr)) and trinary
(ψ(obji, prepij , objj ; textPr)) potential functions model
the pairwise scores between object and attribute node labels,
and the trinary scores for an object-preposition-object triple
labeling respectively. These higher order potentials could
be learned from a large pool of labeled image data. How-
ever, for a reasonable number of objects, and prepositions
the amount of labeled image data that would be required is
daunting. Instead we learn these relationships from large



text collections. By observing in text how people describe
objects, attributes and prepositions between objects we can
well model the relationships between node labels. Descrip-
tions of our text based potentials are provided in Sec. 5.2.

4.1. Converting to Pairwise potentials
Since preposition nodes describe the relationship be-

tween a preposition label and two object labels, they are
most naturally modeled through trinary potential functions:

ψ(obji, prepij , objj ; textPr) (6)

However, most CRF inference code accepts only unary
and pairwise potentials. Therefore we convert this trinary
potential into a set of unary and pairwise potentials through
the introduction of an additional z node for each 3-clique of
obj-prep-obj nodes (see fig 3). Each z node connecting two
object nodes has domain O1xPxO2 where O1 is the domain
of object node1, P is our set of prepositional relations, and
O2 is the domain of object node2. In this way the trinary
potential is converted to a unary potential on z:

ψ(zij ; textPr) (7)

Plus 3 pairwise potentials, one for each of object node1,
preposition node, and object node2 that enforce that the la-
bels selected for each node are the same as the label selected
for Z:

ψ(zij , obji) =
�

0 if Zij(1) = Oi

inf o.w. (8)

ψ(zij , prepij) =
�

0 if Zij(2) = Pij

inf o.w. (9)

ψ(zij , objj) =
�

0 if Zij(3) = Oj

inf o.w. (10)

4.2. CRF Learning
We take a factored learning approach to estimate the pa-

rameters of our CRF from 100 hand-labeled images. In our
energy function (Eqns (1)-(5)), the α parameters represent
the trade-off between image and text based potentials. The
β parameters represent the weighting between image based
potentials. And, the γ parameters represent the weighting
between text based potentials. In the first stage of learn-
ing we estimate the image parameters β while ignoring the
text based terms (by setting α1 to 0). To learn image po-
tential weights we fix β0 to 1 and use grid search to find
optimal values for β1 and β2. Next we fix the β parameters
to their estimated value and learn the remaining parameters
– the trade-off between image and text based potentials (α
parameters) and the weights for the text based potentials (γ
parameters). Here we set α0 and γ0 to 1 and use grid search
over values of α1 and γ1 to find appropriate values.

It is important to carefully score output labelings fairly
for graphs with variable numbers of nodes (dependent on

the number of object detections for an image). We use a
scoring function that is graph size independent:

objt−f

N
+

(mod, obj)t−f

N
+

2
N − 1

(obj, prep, obj)t−f

N

measuring the score of a predicted labeling as: a) the num-
ber of true obj labels minus the number of false obj labels
normalized by the number of objects, plus b) the number of
true mod-obj label pairs minus the number of false mod-obj
pairs, plus c) the number of true obj-prep-obj triples mi-
nus the number of false obj-prep-obj triples normalized by
the number of nodes and the number of pairs of objects (N
choose 2).

4.3. CRF Inference
To predict the best labeling for an input image graph

(both at test time or during parameter training) we utilize the
sequential tree re-weighted message passing (TRW-S) algo-
rithm introduced by Kolmogorov [17] which improves upon
the original TRW algorithm from Wainwright et al [25].
These algorithms are inspired by the problem of maximiz-
ing a lower bound on the energy. TRW-S modifies the TRW
algorithm so that the value of the bound is guaranteed not
to decrease. For our image graphs, the CRF constructed is
relatively small (on the order of 10s of nodes). Thus, the
inference process is quite fast, taking on average less than a
second to run per image.

5. Potential Functions
In this section, we present our image based and descrip-

tive language based potential functions. At a high level the
image potentials come from hand designed detection strate-
gies optimized on external training sets (we use some off the
shelf detectors and train others in order to cover more object
categories). In contrast the text potentials are based on text
statistics collected automatically from various corpora.

5.1. Image Based Potentials
ψ(obji; objDet) - Object and Stuff Potential

Object Detectors: We use an object detection system
based on Felzenszwalb et al.’s mixtures of multi-scale de-
formable part models [13] to detect “thing objects”. We use
the provided detectors for the 20 PASCAL 2010 object cate-
gories and train 4 additional non-PASCAL object categories
for flower, laptop, tiger, and window. For the non-PASCAL
categories, we train new object detectors using images and
bounding box data from Imagenet [6]. The output score of
the detectors are used as potentials.

Stuff Detectors: Classifiers are trained to detect regions
corresponding to non-part based object categories. We train
linear SVMs on the low level region features of [9] to rec-
ognize: sky, road, building, tree, water, and grass stuff cate-
gories. SVM outputs are mapped to probabilities. Training
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Figure 4. Results of sentence generation using our method with template based sentence generation. These are “good” results as judged by
human annotators.

images and bounding boxes are taken from ImageNet and
evaluated at test time on a coarsely sampled grid of over-
lapping square regions over whole images. Pixels in any
region with a classification probability above a fixed thresh-
old are treated as detections, and the max probability for a
region is used as the potential value.

ψ(attri; attrCl) - Attribute Potential

Attribute Classifiers: We train visual attribute classi-
fiers that are relevant for our object (and stuff) categories.
Therefore, we mine our large text corpus of Flickr descrip-
tions (described in Sec. 5.2) to find attribute terms com-
monly used with each object (and stuff) category removing
obviously non-visual terms. The resulting list consists of
21 visual attribute terms describing color (e.g. blue, gray),
texture (e.g. striped, furry), material (e.g. wooden, feath-
ered), general appearance (e.g. rusty, dirty, shiny), and
shape (e.g. rectangular) characteristics. Training images
for the attribute classifiers come from Flickr, Google, the
attribute dataset provided by Farhadi et al [10], and Ima-
geNet [6]. An RBF kernel SVM is used to learn a classifier
for each visual attribute term (up to 150 positive peer class
with all other training examples as negatives). The outputs
of the classifiers are used as potential values.

ψ(prepij; prepFuns) - Preposition Potential

Preposition Functions: We design simple prepositional
functions that evaluate the spatial relationships between
pairs of regions in an image and provide a score for each
of 16 preposition terms (e.g. above, under, against, be-
neath, in, on etc). For example, the score for above(a, b)
is computed as the percentage of regiona that lies in the
image rectangle above the bounding box around regionb.
The potential for near(a, b) is computed as the minimum

distance between regiona and regionb divided by the diag-
onal size of a bounding box around regiona. Similar func-
tions are used for the other preposition terms. We include
synonymous prepositions to encourage variation in sentence
generation but sets of synonymous prepositions share the
same potential. Note for each preposition we compute both
prep(a,b) and prep(b,a) as either labeling order can be pre-
dicted in the output result.

5.2. Text Based Potentials
We use two potential functions calculated from large

text corpora. The first is a pairwise potential on attribute-
object label pairs ψ(attri, obji; textPr) and the second
is a trinary potential on object-preposition-object triples
ψ(obji, prepij , objj ; textPr). These potentials represent
the probability of various attributes for each object and
the probabilities of particular prepositional relationships be-
tween object pairs.

Parsing Potentials: To generate the attribute-object po-
tential ψp(attri, obji; textPr) we collect a large set of
Flickr image descriptions (similar in nature to captions,
but less regulated). For each object (or stuff) category we
collect up to 50000 image descriptions (fewer if less than
50000 exist) by querying the Flickr API1 with each object
category term. Each sentence from this descriptions set is
parsed by the Stanford dependency parser [5] to generate
the parse tree and dependency list for the sentence. We
then collect statistics about the occurence of each attribute
and object pair using the adjectival modifier dependency
amod(attribute, object). Counts for synonyms of object
and attribute terms are merged together.

For generating the object-preposition-object potential

1http://www.flickr.com/services/api/
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Figure 5. Comparison of our two generation methods.

ψp(obji, prepij , obji; textPr) we again collect a large set
of Flickr image descriptions (about 1.4 million total), in
this case using queries based on pairs of object terms. All
descriptive sentences containing an occurence of at least
2 of our object (or stuff) categories plus a prepositional
term (about 140k) are parsed using the Stanford dependency
parser. We then collect statistics for the occurence of each
prepositional dependency between object categories. For a
prepositional dependency occurence, object1 is automati-
cally picked as either the subject or object part of the prepo-
sitional dependency based on the voice (active or passive) of
the sentence, while object2 is selected as the other. Again
counts for an object and its synonyms are merged together.

Google Potentials: Though we parse thousands of
descriptions, the counts for some objects can be some-
what sparse. Therefore, we also collect additional
Google Search based potentials: ψg(attri, obji; textPr)
and ψg(obji, prepij , objj ; textPr). These potentials are
computed as the number of search results approximated
by Google for an exact string match query on each of our
attribute-object pairs (e.g. “brown dog”) and preposition-
object-preposition triples (e.g. “dog on grass”).

Smoothed Potentials: Our final potentials are computed
as a smoothed combination of our parsing based potentials
with the Google potentials: αψp + (1− α)ψg .
6. Generation

The output of our CRF is a predicted labeling of the im-
age. This labeling encodes three kinds of information: ob-
jects present in the image (nouns), visual attributes of those
objects (modifiers), and spatial relationships between ob-
jects (prepositions). Therefore, it is natural to extract this
meaning into a triple (or set of triples), e.g.:
<< white, cloud >, in, < blue, sky >>

Based on this triple, we want to generate a complete sen-

tence such as “There is a white cloud in the blue sky”. For
brevity, we make the following restrictions on generation:
first, the set of words in the meaning representation is fixed
and generation must make use of all given content words.
Second, generation may insert only gluing words (i.e., func-

tion words such as “there”, “is”, “the”, etc) to complete the
sentences. These restrictions could be lifted in future work.

6.1. Decoding using Language Models
A N -gram language model is a conditional probability

distribution P (xi|xi−N+1, ..., xi−1) of N -word sequences
(xi−N+1, ..., xi), such that the prediction of the next word
depends only on the previous N -1 words. That is, with
N -1’th order Markov assumption, P (xi|x1, ..., xi−1) =
P (xi|xi−N+1, ..., xi−1). Language models are shown to be
simple but effective for improving machine translation and
automatic grammar corrections.

In this work, we make use of language models to pre-
dict gluing words (i.e. function words) that put together
words in the meaning representation. As a simple exam-
ple, suppose we want to determine whether to insert a func-
tion word x between a pair of words α and β in the mean-
ing representation. Then, we need to compare the length-
normalized probability p̂(αxβ) with p̂(αβ), where p̂ takes
the n’th root of the probability p for n-word sequences, and
p(αxβ) = p(α)p(x|α)p(β|x) using bigram (2-gram) lan-
guage models. If considering more than two function words
between α and β, dynamic programming can be used to find
the most optimal sequence of function words efficiently.
Because the ordering of words in each triple of the meaning
representation coincides with the typical ordering of words
in English, we retain the original ordering for simplicity.
Note that this approach composes a separate sentence for
each triple, independently from all other triples.

6.2. Templates with Linguistic Constraints
Decoding based on language models is a statistically

principled approach, however, two main limitations are: (1)
it is hard to enforce grammatically correct sentences us-
ing language models alone (2) it is ignorant of discourse
structure (coherency among sentences), as each sentence
is generated independently. We address these limitations
by constructing templates with linguistically motivated con-
straints. This approach is based on the assumption that there
are a handful of salient syntactic patterns in descriptive lan-
guage that we can encode as templates.

7. Experimental Results & Conclusion
To construct the training corpus for language models,

we crawled Wikipedia pages that describe objects our sys-
tem can recognize. For evaluation, we use the UIUC PAS-
CAL sentence dataset2, which contains upto five human-
generated sentences that describe each image.

2http://vision.cs.uiuc.edu/pascal-sentences/



!"#"$%"$&""$'("$)'*"+),-(./$$

!"##"$%&'()(*+,$#-&

012&$2&$-$)23.4#"$'5$'("$+'6/$$

012&$2&$-$)1'.'6#-)1$'5$.%'$&1"")&$-(+$'("$
6#-&&/$01"$7#&.$8,-39$&1"")$2&$8:$.1"$6#""($
6#-&&;$-(+$8:$.1"$&"3'(+$8,-39$&1"")/$01"$
&"3'(+$8,-39$&1"")$2&$8:$.1"$6#""($6#-&&/$$

.$*,//(*)&01/"23)(#-&

012&$2&$-$)1'.'6#-)1$'5$.%'$1'#&"&$-(+$'("$
6#-&&/$01"$7#&.$5"-.1"#"+$1'#&"$2&$%2.12($.1"$
6#""($6#-&&;$-(+$8:$.1"$&"3'(+$5"-.1"#"+$
1'#&"/$01"$&"3'(+$5"-.1"#"+$1'#&"$2&$%2.12($
.1"$6#""($6#-&&/$$

01"#"$-#"$.%'$3'%&$-(+$'("$)"#&'(/$01"$
7#&.$8#'%($3'%$2&$-6-2(&.$.1"$8#'%($
)"#&'(;$-(+$("-#$.1"$&"3'(+$3'%/$01"$
8#'%($)"#&'($2&$8"&2+"$.1"$&"3'(+$3'%/$$

4,3$+$%&"#&50/'6&

012&$2&$-$)23.4#"$'5$5'4#$)"#&'(&/$01"$7#&.$
3','#54,$)"#&'($2&$8:$.1"$&"3'(+$)2(9$
)"#&'(;$-(+$8:$.1"$.12#+$3','#54,$)"#&'(/$
01"$&"3'(+$)2(9$)"#&'($2&$8:$.1"$.12#+$
3','#54,$)"#&'(;$-(+$8:$.1"$5'4#.1$)"#&'(/$$

.$*,//(*)&'()(*+,$#-&

01"#"$-#"$'("$#'-+$-(+$'("$3-./$01"$
54##:$#'-+$2&$2($.1"$54##:$3-./$$

012&$2&$-$)23.4#"$'5$'("$.#"";$'("$
#'-+$-(+$'("$)"#&'(/$01"$#4&.:$.#""$
2&$4(+"#$.1"$#"+$#'-+/$01"$3','#54,$
)"#&'($2&$("-#$.1"$#4&.:$.#"";$-(+$
4(+"#$.1"$#"+$#'-+/$$

73#)&088&9/,$%6&

01"#"$-#"$'("$)'*"+$),-(.;$'("$.#"";$
'("$+'6$-(+$'("$#'-+/$01"$6#-:$
)'*"+$),-(.$2&$8"("-.1$.1"$.#""/$01"$
.#""$2&$("-#$.1"$8,-39$+'6/$01"$#'-+$2&$
("-#$.1"$8,-39$+'6/$01"$8,-39$+'6$2&$
("-#$.1"$6#-:$)'*"+$),-(./$$

012&$2&$-$)1'.'6#-)1$'5$'("$)"#&'($-(+$'("$
&9:/$01"$%12."$)"#&'($2&$8:$.1"$8,4"$&9:/$$

Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by
human annotators.

Automatic Evaluation: BLEU [20] is a widely used metric
for automatic evaluation of machine translation that mea-
sures the n-gram precision of machine generated sentences
with respect to human generated sentences. Because our
task can be viewed as machine translation from images
to text, BLEU may seem like a reasonable choice at first
glance. Upon a close look however, one can see that there
is inherently larger variability in generating sentences from
images than translating a sentence from one language to an-
other. For instance, from the image shown in Figure 1, our
system correctly recognizes objects such as “chair”, “green
grass”, “potted plant”, none of which is mentioned in the
human generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences, which in turn
can cause a low correlation with human judgment of quality.
Nevertheless, we report BLEU score as a standard evalua-
tion method, and to provide a quantification of its shortcom-
ings for future research.

The results are shown in Table 1. The first column
shows BLEU score when measured with exact match for
each word, and the second column shows BLEU when we
give full credits for synonymous words. To give a sense of
upper bound, we also compute the BLEU score of human-
generated sentences; we compute the average over all im-
ages of the BLEU score for one human-generated sentence
with respect to the others for that image. Finally, we com-
pute BLEU score of the raw CRF outputs with respect to
the human-generated sentences.
Human Evaluation: Evaluation by BLEU score facilitates
efficient comparisons among different approaches, but does
not measure vision output quality directly, and is oblivious
to correctness of grammar or discourse quality (coherency

Method w/o w/ synonym
Human 0.50 0.51
Language model-based generation 0.26 0.31
Template-based generation 0.16 0.19
Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Method Score
Quality of image parsing 2.88
Language model-based generation 2.80
Template-based generation 3.42

Table 2. Human Evaluation: possible scores are 4 (perfect without error),
3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+
Quality of image parsing 2.88 2.81 2.85 3.03
Language model-based 2.55 2.98 2.82 2.93
Template-based generation 3.59 3.47 3.30 3.14

Table 3. Human Evaluation: k refers to the number of objects detected
by CRF. Possible scores are 4 (perfect without error), 3 (good with some
errors), 2 (many errors), 1 (failure)

across sentences). To directly quantify these aspects, we
perform human judgment on the entire test set. The results
are shown in Table 2 and 3, where the image parsing score
evaluates how well we describe image content, and the other
two scores evaluate the overall sentence quality. Overall our
template generation method demonstrates a very high aver-
age human evaluation score of 3.42 (out of max 4) for the
quality of generated sentences. We also do well at predict-
ing image content (ave 2.88 out of max 4).

Note that human judgment of the generation quality
does not correlate with BLEU score. Per BLEU, it looks
as though language-model generation performs better than
template-based one, but human judgment reveals the op-
posite is true. The Pearson’s correlation coefficient be-



tween BLEU and human evaluationare is -0.16 and 0.05 for
language model and template-based methods respectively.
We also measure human annotation agreement on 160 in-
stances. The scores given by two evaluators were identical
on 61% of the instances, and close (difference≤ 1) on 92%.

7.1. Qualitative Results
The majority of our generated sentences look quite good.

Some example results are shown in fig 4 that represent some
“good” generation results on PASCAL images. However, in
fact most of our results look quite good. Even “bad” results
almost always look reasonable and are relevant to the image
content (fig 6). Only in a small majority of the images are
the generated descriptions completely unrelated to the im-
age content (fig 6, 2 right most images). In cases where the
generated sentence is not quite perfect this is usually due to
one of three problems: a failed object detection that misses
an object, a detection that proposes the wrong object cate-
gory, or an incorrect attribute prediction. However, because
of our use of powerful vision systems (state of the art detec-
tors and attribute methodologies) the results produced are
often astonishingly good.

7.2. Conclusion
We have demonstrated a surprisingly effective, fully au-

tomatic, system that generates natural language descriptions
for images. The system works well and can produce results
much more specific to the image content than previous au-
tomated methods. Human evaluation validates the quality
of the generated sentences. One key to the success of our
system was automatically mining and parsing large text col-
lections to obtain statistical models for visually descriptive
language. The other is taking advantage of state of the art
vision systems and combining all of these in a CRF to pro-
duce input for language generation methods.
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